Special workshop explores P91/T91 issues, impending ASME Code changes

By Robert W Anderson, chairman, HRSG User’s Group

Problems in the fabrication, construction, and repair of 9Cr-1Mo steels have surfaced at many combined-cycle stations, raising safety concerns among plant owners and spurring efforts within ASME to revise its Boiler & Pressure Vessel Code. Last July, the HRSG User’s Group assembled several of the world’s leading authorities on P9/T91, including the chairman of the Code-revision Task group, to discuss the problems as well as the Code changes needed to respond to them (Fig 1). Participants in the well-attended workshop, held in Philadelphia, included O&M personnel, manufacturers, fabricators, EPC contractors, constructors, welders, authorized inspectors, and R-stamp holders from 50 different companies.

Setting the stage

William F Newell, Jr, PE, IWE, vice president, EuroWeld Ltd, was the first speaker. His excellent overview of 9Cr-1Mo steels established a hard-hitting tone for the two-day seminar. Newell began with a concise history of the strong but easily degraded alloy, and explained why P9/T91 and other creep-strength enhanced ferritic steels are growing in usage.

The family of alloys traces its roots to the late 1970s, when it was being studied for possible use in the Clinch River Breeder Reactor. Researchers found that 9Cr-1Mo steels, compared to traditional 2.25Cr-1Mo ferritic steels and 300-series austenitic stainless steels, possessed lower thermal expansion, higher thermal conductivity, and improved oxidation resistance. These properties would enable the high-chrome alloy to minimize thermally induced stresses in power-plant components.

With the addition of niobium, vanadium, and nitrogen, Newell explained, the “standard” 9Cr-1Mo (ASTM P9/T9) also exhibited a substantial increase in creep-rupture strength, compared to traditional steels, thus giving birth to the “modified” version of 9Cr-1Mo. The impressive, new alloy was certified in the 1980s as ASTM A213 Grade T91 for tubing and piping, but another decade went by before it gained much acceptance.

Initially, Newell explained, power-plant operators and constructors worried that the material was not readily available, that all welds—regardless of thickness or diameter—would require post-weld heat treatment (PWHT), and that welds between dissimilar metals would cause problems.

Significantly, the few early adopters of P91/T91 and their suppliers paid great attention to these concerns, and as a result their field applications—at coal-fired plants like TVA’s Kingston and Appalachian Power Co’s Glen Lyn station—proved successful. “The designers, fabricators, and installers followed all the rules,” Newell explained. They operated with conservative design margins (wall thickness), at reasonable steam temperatures (1050°F or lower), and they carefully chose their steel producers and component fabricators. Newell smiled, “The low bidders were not involved yet.”

It’s not your father’s Oldsmobile

In the 1980s, P91/T91 was seen by the booming combined-cycle industry as the cure-all for two major HRSG problems: thermal fatigue of thick-walled components, such as main steam piping and superheater headers, and creep damage in the superheaters.

The alloy’s mechanical properties would allow pressure-containing components to be made in thinner sections, leading to smaller temperature gradients across the wall, reduced time for the metal to reach thermal equilibrium, and ultimately less thermal fatigue. For example, the upgrade of a typical HRSG superheater header from P22 to P91 can reduce wall thickness by 54%, and component weight by 60%.
In addition, the alloy’s high creep-rupture strength and resistance to oxidation would minimize damage to superheater sections, particularly those coupled to the latest F- and G-class gas turbines that experience the highest metal temperatures.

Unfortunately, Newell reported, many of the owners and builders of combined-cycle facilities downplayed the concerns of the early coal-plant adopters, and handled the advanced alloy as if it were an ordinary steel. Therein lies the rub. Newell stressed, “P91/T91 is not just another chrome-moly!” It is a highly advanced material whose mechanical properties depend on its microstructure.

Because this fact was neglected, Newell continued, HRSG users began to experience failures in dissimilar metal welds and transition areas—often in less than 1000 hours—and failures caused by poor weld geometry or inappropriate heat treatment—typically in less than 5000 hours.

The following anecdote highlights the failures to which Newell was referring: At an earlier conference conducted by the HRSG User’s Group, the approximately 200 users in attendance were asked how many had experienced piping failures of any material. Fifteen hands shot up. Next question: How many were P91 material? Twelve hands remained in the air.

A common error, Newell reported, has been performing localized heating of the Grade 91 component with oxy-fuel torches. These are notoriously difficult to control and almost always provide destructive, non-uniform heat treatment (Fig 3). Another common error is allowing an incorrect procedure for PWHT—temperature too high, temperature too low, or temperature not maintained for the correct duration. Even worse, some contractors are repairing P91 components without performing any PWHT at all. Paraphrasing a line from Apollo 13, a movie that concerned another engineering disaster, Newell stated that with P91 material, “PWHT is not an option!”

3. Localized heating using oxy-fuel torches is one way to damage the P91 microstructure. Yet it’s been done many times in the fabrication, erection, and repair of combined-cycle plants.

4. Martensite is a high-energy structure in which a dense array of sub-microscopic defects block easy movement of the lattice atoms along slip planes when stressed. Disruption of these defects—through improper heat treatment, welding, cold work, etc.—will destroy Grade 91’s mechanico-

cal properties.

Specifically, the properties require a controlled normalizing process to produce a complete phase transformation from austenite into martensite. This produces a hard steel with high tensile strength at elevated temperatures and with high creep resistance. A controlled tempering process must follow, to allow carbides to precipitate at defect sites in the microstructure of combined-cycle plants.

Failure to achieve this precise microstructure during original steel production or to maintain the microstructure during any subsequent action in the steel’s life—such as the hot bending, forging, or welding that regularly occurs during component fabrication, plant construction, and steam-plant repairs—will cause a phase change away from 100% properly tempered martensite or will disrupt the precipitates, either of which will destroy the mechanical properties of the alloy (Fig 4).

Unfortunately, Henry explained, the existing ASME rules are not detailed enough to address this problem and prevent failures of P91/T91 components. In fact, Henry believes that today’s problems will only get worse unless comprehensive, technically defensible, and widely accepted rules are established. That’s why he is chairing a Task Group, working under the direction of the chairman of Section II (Materials) of the ASME Boiler & Pressure Vessel Code, to develop such rules for Grade 91, as well as other approved steels classified as creep-strength-enhanced ferrite (9Cr, 92, 122, etc.).

To date, Henry and his Task Group have identified eight specific materials engineering—a great review for those who don’t want to admit how many decades ago they went to school—complete with iron-carbon phase diagrams, body-centered cubic vs face-centered cubic lattices, and martensitic transformation temperatures. While the metallurgy lesson was in-depth, Henry’s message was grasped by all: The superior properties of Grade 91 depend on the creation of a precise condition of microstructure, and the maintenance of that microstructure throughout its service life.

Specifically, the properties require a controlled normalizing process to produce a complete phase transformation from austenite into martensite. This produces a hard steel with high tensile strength at elevated temperatures and with high creep resistance. A controlled tempering process must follow, to allow carbides to precipitate at defect sites in the microstructure of combined-cycle plants.

Failure to achieve this precise microstructure during original steel production or to maintain the microstructure during any subsequent action in the steel’s life—such as the hot bending, forging, or welding that regularly occurs during component fabrication, plant construction, and steam-plant repairs—will cause a phase change away from 100% properly tempered martensite or will disrupt the precipitates, either of which will destroy the mechanical properties of the alloy (Fig 4).

Unfortunately, Henry explained, the existing ASME rules are not detailed enough to address this problem and prevent failures of P91/T91 components. In fact, Henry believes that today’s problems will only get worse unless comprehensive, technically defensible, and widely accepted rules are established. That’s why he is chairing a Task Group, working under the direction of the chairman of Section II (Materials) of the ASME Boiler & Pressure Vessel Code, to develop such rules for Grade 91, as well as other approved steels classified as creep-strength-enhanced ferrite (9Cr, 92, 122, etc.).

To date, Henry and his Task Group have identified eight specific

Sulzer Hickman Inc
Sulzer Turbo Services
1518 Old LaFayette Pk
LaPorte, TX 77571

Sulzer Enpro Inc
Sulzer Turbo Services
1161 Engineers Hk.
Belle Chasse, LA 70037

Sulzer Turbo Services has always pushed the boundaries of repair and will continue to do so in the fields of:

- Rotating Equipment Repair and Uverhaul
- Component Repair and Manufacturing
- Re-lighting and Modernization Retrofits
- Long Term Service Agreements (LTSAs)
- Upgrading Technology Development
- Field Services
- High Speed Balancing
- Maintenance Contracts (MCO)

Sulzer Hickman Inc
www.sulzerhickman.com
Phone +1 (713) 567 2700
Fax +1 (713) 567 2710
E-mail sales@hickman.com

Sulzer Elbar BV
www.sulzerelbar.com
Phone +31 (1) (3) 473 66 86
Fax +31 (1) / (4) 37 27 86
E-mail metael@elbar.com

Sulzer Repco BV
www.sulzerreco.nl
Phone +31 (22) 282 02 02
Fax +31 (22) 282 02 02
E-mail sales.sulzerreco@nl

Sulzer Enpro Inc
www.sulzerenpro.com
Phone +1 (514) 350 1932
Fax +1 (514) 350 2235
E-mail sales.sulzerenpro@com

P1 - Sulzer Hickman Indonesia
Phone +62 (814) 91 02 02
Fax +62 (814) 91 02 02
E-mail p1hikman@ulizer.com

The Art of High Technology
issues concerning the use of these alloys, and made recommendations for changes to the Code that will control their use more effectively. At the HRSG User’s Group workshop, all eight were discussed in detail, with a great level of helpful interaction between Henry and the many P91 authorities in the audience. Space limitations, however, allow presentation here of only a sample of the issues discussed.

ISSUE: Intercritical exposure/over-tempering/under-tempering

One of the most significant problems with Grade 91 is post-production exposure to temperatures in the intercritical region. This is above the temperature where martensite begins to transform back into austenite (referred to as the lower critical transformation temperature or AC1) and below the temperature where phase transformation is complete (called the upper critical transformation temperature, AC3). When Grade 91 is exposed to this intercritical region, the martensite is partially re-austenitized and the carbide nitride precipitates are coarsened but do not fully dissolve back into solution. The resulting material, after partial re-austenitization, is partially re-austenitized and the precipitates either are absent or are of insufficient size to stabilize the structure. In addition to a loss of creep-rupture strength, cracks associated with under-tempering are brittle fracture and stress-corrosion cracking.

Task Group response. In response to the issue presented above, the Task Group is recommending three actions:

- Impose an upper temperature limit on tempering and PWHT in order to avoid exposure to the intercritical region and the risk of over-tempering.
- Review the lower tempering limit.
- Prohibit localized heat treatments if temperature exceeds AC1.

Specific limits being proposed are:
- 1300-1325°F for normalizing,
- 1350-1400°F for tempering, and
- 1375-1470°F for PWHT.

If there is a component to which a portion of the component is heated above 1470°F, the component would have to be re-normalized and tempered in its entirety, or as an alternative, the heated portion could be removed from the component for re-normalization and tempering and then replaced into the component.

ISSUE: Post-weld heat treatment

A second issue being addressed by the ASME Task Group is the effect of weld fillers on PWHT. Certain alloying elements in the filler—the principal nickel and manganese—depress the AC1 and AC3 temperatures, as well as the martensite start (Ms) and martensite finish (Mf) temperatures. During PWHT, this presents the risks of intercritical heat-treat damage and untempered martensite in the weld metal. Henry noted that the AWS standards allow up to 1% Ni in weld metal, significantly higher than the 0.4% Ni maximum in base metal specifications.

In response to this issue, the Task Group has proposed stringent PWHT limits on Grade 91 components based on Ni + Mn content. Specifically:

- PWHT temperature range is 1350-1425°F, if the chemical composition of the filler metal is not known precisely.
- For components less than or equal to 5 in. thick, minimum PWHT time is one hour per inch, with a minimum PWHT time of 30 minutes.
- For components thicker than 5 in., PWHT is five hours, plus 15 minutes for each inch over five inches.
- For weld thickness less than or equal to 0.5 in., minimum PWHT temperature is 1325°F.
- If the chemical composition of matching filler metal is known precisely, the maximum PWHT temperature can be increased as follows:
 - If Ni + Mn < 1.50% but >
6. One European HRSG manufacturer uses a plot of LMP (Larson Miller Parameter) versus hardness to determine optimal PWHT (T, hours) and temperature (K, Kelvin) values for post-weld heat treatment of Grade 91 material.

 ISSUE: Control of properties through hardness testing

Another of the eight issues that Henry’s Task Group is tackling is quality-assurance testing of the advanced alloys. In order to determine whether the processing of creep-strength-enhanced ferritic steels has been performed correctly, users need a tool that can quickly and inexpensively provide information on the overall condition of the material.

Because hardness provides a direct indication of a material’s room-temperature tensile strength, which can be used to roughly estimate the elevated-temperature behavior of the material, portable hardness testing has been considered as such a tool. With that in mind, the ASME Task Group has considered developing specific hardness limits that, if exceeded, require the user to perform additional testing—such as metallographic replication and destructive sampling—to demonstrate integrity of the material processing.

However, the Task Group believes further study is warranted because of the substantial variability in portable hardness test results. Henry pointed out that the variables include type of tester—rebound vs penetration—skill of the individual conducting the test, surface cold work, exposure to the intercritical temperature range, and surface decarburization.

Consider just the last variable: If the decarburized layer is not completely removed prior to testing, the hardness measured will be reduced by some amount corresponding to the depth of the layer affected and the depletion of the carbon. Note that even if ASM’s decides on specific hardness limits, they still would not address one variable: the exposure to the intercritical temperature range. For material that has been exposed to temperatures in the intercritical range, hardness testing will not adequately indicate damage, since the re-formed martensite can mask the effects of the undesirable heat exposure.

Hardness help

The ASME Task Group is not the only group wrestling with the vagaries of hardness testing. In Europe, HRSG manufacturer NEM bv at Antwerp has devoted much effort to the issue. The company’s materials and welding engineer, Ing Patric de Smet, IWE, delivered an insightful presentation at the July workshop, providing an overview of European experience with advanced alloys and an in-depth discussion of hardness testing.

De Smet explained that, if the Grade 91 material has received proper heat treatment, hardness test results will be in a relatively tight range—not too high and not too low. Nevertheless, hardness testing can mask the effects of the undesirable heat exposure.

De Smet emphasized that the LMP will result in too-high hardness if the weld metal and the base metal. The optimum parameters, de Smet pointed out, are found around an LMP of 20, as indicated by the vertical green lines in Fig 6.

Tempering at relatively low LMP will result in too-high hardness if the weld metal and heat affected zone; toughness is low. At the other extreme, PWHT at very high LMP values (high temperature for long duration) results in softening of both the weld metal and the base metal. De Smet emphasized that the LMP can be used not for heat treatments to the lower critical transformation temperature, AC1.

Note that there are several different hardness instruments and scales applied in engineering practice. Instruments used in the laboratory include Vickers, Rockwell (both “A,” “B” and “C”), and Brinell. Portable hardness testers include Ecuo Tip, Rockwell, and TeleBrineller. The following Rockwell B values for portable testable components have been adopted by one US power producer as a QA check on P91 materials.

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Heating rate, 176-248 deg F/hr</th>
<th>Cooling rate, 212-302 deg F/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>452-542°F</td>
<td>59-129°F</td>
</tr>
<tr>
<td>2-4 hours</td>
<td>1400°F (-0/18 deg F)</td>
<td>2-4 hours</td>
</tr>
<tr>
<td>1412</td>
<td>752°F</td>
<td>2-4 hours</td>
</tr>
<tr>
<td>1420</td>
<td>735°F</td>
<td>2-4 hours</td>
</tr>
<tr>
<td>1422</td>
<td>719°F</td>
<td>2-4 hours</td>
</tr>
<tr>
<td>1425</td>
<td>702°F</td>
<td>2-4 hours</td>
</tr>
</tbody>
</table>

For More Information Contact:

Mechanical Dynamics & Analysis, LLC
Gas Turbine Services
29 British American Boulevard
Latham, NY 12110

Phone: (518) 399-3816
Fax: (518) 399-3928
E-Mail: Lmolina@mdaturbines.com
Website: www.MDAturbines.com
Weldability a weighty issue

In another excellent presentation at the P91 Workshop, Dr Herbert Heuser of Boehler Thysen Schweistech nik Deutschland GmbH, tutored attendees on the specific challenges of welding P91/T91 components. Following a precise time vs temperature curve is one key to reliable welds, Heuser explained (Fig 7). He recommends cooling down after welding to temperatures of 170°F to 212°F before PWHT is initiated.

Another key to reliable welds, Heuser explained, is the proper matching of filler metals, which can be gleaned from the “B” category of AWS tables. He cautioned, however, that there are restrictions to analy- sis tolerances to ensure that the mechanical values—in particular the notch toughness and creep rupture strength—are in accordance with the operational requirements. The notch toughness of the weld metal is influenced by the PWHT parameters, in addition to the chemical composition and the welding parameters.

Heuser also discussed the fact that field welding often requires joining P91 piping to piping of dissimilar alloys—such as P52 or austenitic stainless steel. In this application, the proper selection of filler metal becomes even more challenging. Dissimilar metal welds also present a challenge from a PWHT standpoint, because the PWHT schedules can be quite different for low Cr-Mo alloys versus the 9Cr-1Mo materials.

Heuser offered these suggestions for avoiding cracking when welding P91 components:

■ Adhere to the specifications on preheating and interpass tempera- tures.
■ Ensure equal temperature dis- tribution over the cross-section of the parts with sufficient tempera- ture control on the part during welding and heat treatment.
■ Design according to stress— specifically, avoid abrupt wall thickness changes.
■ Determine welding sequence with particular attention to resid- ual stress.
■ Pay attention to heat input. Don’t exceed the interpass tem- perature.

Current status

The ASME Task Group has present- ed its recommendations on some of the eight issues it is studying to the Section II Committee. It is not clear when the Section II Committee will act on those recommendations with formal changes to the Code. In the meantime, the ASME Task Group continues to study the remaining issues it has identified regarding P91 and other high-strength fer- ritic steels.

The HRSG User’s Group will continue to track, on behalf of its 1100 members worldwide, the Task Group’s efforts as well as industry experience. The organization will update members at future conferences and workshops (see sidebar).

Managing your materials

The HRSG User’s Group workshop helped to advance the industry’s understanding of P91/T91, but the organization’s chairman remains concerned that the combination of the (1) recent “bubble” in combined- cycle construction, (2) the dominance of the low bidder, and (3) the sensitivity of Grade 91 materials to errors in thermal processing have positioned combined-cycle operators for a wave of steam-plant failures. Managers of plants with P91 components are urged to establish a rigorous monitoring program—including routine visual inspections and nonde- structive evaluation.

If a wave of P91 failures does emerge, the industry will need to manage potentially dangerous situa- tions—such as leaking high-pressure steam pipes—to avoid catastrophic equipment damage, personnel inju- ries, and even death. If you have been in the power industry for sev- eral years, you may recall one or more tragic piping failures—such as the Mohave coal-fired plant’s fatal steam rupture in the 1990s. While earlier accidents did not involve P91, the results at a combined-cycle plant could be the same if steam leaks are not properly managed.

The following safe action plan can help protect your personnel:

■ You must assume a leak if you see steam, water, or heat waves coming from a high-pres- sure steam line.
■ Clear the area immediately and keep all personnel away.
■ Promptly depressurize the affected line with minimal thermal shock to the system. This usually requires an unplanned shutdown of the entire plant.
■ Do not remove insulation while the line is pressurized.
■ Only after the line is secure should you allow personnel to enter the area, determine if you have a leak, and what appropriate response is required.

Such an approach may seem extreme, but less aggressive action— such as waiting for the weekend or the next scheduled outage before you shut down—could result in a cata- strophic and fatal failure. It has happened before.

Look closer. There is a difference—and ACT customers save millions by recognizing it. It’s no mystery. Our customers believe that details matter. They demand efficient solutions. They know that ACT is committed to the level of attention that large corporations strive for but seldom attain. They insist on dealing directly with people who have the credentials, experience and responsibility to get the job done—first time, on time, every time. From critical turnarounds to long-term maintenance contracts, ACT is the fully independent alternative to overpriced excuses.

Maintenance – Outage Planning Technical Support
Emergency Spares
Component Life Extension Power Alliance Services
Vacuum Heat Treating
Atmospheric Chamber Welding Custom Machining
Specialty Fitting Metallurgical Lab
Professional Engineers
Failure Analysis – R&D – Upgrades

ACT customers save millions by knowing the difference

The HRSG User’s Group’s annual meeting: Steam Plant Workshop next on group’s agenda

The HRSG User’s Group, a professional association that’s open to all combined-cycle/cogen profes- sionals, announces that its 14th Annual Conference & Expo will be held March 13–15, 2006, at the five-star Broadmoor Resort in Colorado Springs. To register and/or exhibit, contact Lillian O’Connor (718-317-6737, lillian@crimeetings.com).

Reminder: The group’s next event, Steam Plant Work- shop, is scheduled for December 6–7 in Las Vegas. It will tackle issues affecting the entire integrated steam cycle—not just the HRSG. The focus of the first day’s program is cycle chemistry; the second day, improving steam-plant O&M. Program details are in the User Group Activities section elsewhere in this issue and at www.hrsgusers.org.

Note that the HRSG User’s Group is an approved “certified education provider” by a state board of profes- sional engineers. Workshop attendees receive two continuing education credits.

Remind er: The Steam Plant Workshop will be co-located with Power-Gen International, enabling registrants to partic- ipate in the focused technical seminar while attending in the world’s largest power-generation exhibition.